
2
ENTITY-RELATIONSHIP MODEL

The great successful men of the world have used their imaginations. They think

ahead and create their mental picture, and then go to work materializing that

picture in all its details, filling in here, adding a little there, altering this bit and

that bit, but steadily building, steadily building.

—Robert Collier

The entity-relationship (ER) data model allows us to describe the data involved in a

real-world enterprise in terms of objects and their relationships and is widely used to

develop an initial database design. In this chapter, we introduce the ER model and

discuss how its features allow us to model a wide range of data faithfully.

The ER model is important primarily for its role in database design. It provides useful

concepts that allow us to move from an informal description of what users want from

their database to a more detailed, and precise, description that can be implemented

in a DBMS. We begin with an overview of database design in Section 2.1 in order

to motivate our discussion of the ER model. Within the larger context of the overall

design process, the ER model is used in a phase called conceptual database design. We

then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5, we discuss

database design issues involving the ER model. We conclude with a brief discussion of

conceptual database design for large enterprises.

We note that many variations of ER diagrams are in use, and no widely accepted

standards prevail. The presentation in this chapter is representative of the family of

ER models and includes a selection of the most popular features.

2.1 OVERVIEW OF DATABASE DESIGN

The database design process can be divided into six steps. The ER model is most

relevant to the first three steps:

(1) Requirements Analysis: The very first step in designing a database application

is to understand what data is to be stored in the database, what applications must be

built on top of it, and what operations are most frequent and subject to performance

requirements. In other words, we must find out what the users want from the database.

24

The Entity-Relationship Model 25

Database design tools: Design tools are available from RDBMS vendors as well

as third-party vendors. Sybase and Oracle, in particular, have comprehensive sets

design and analysis tools. See the following URL for details on Sybase’s tools:

http://www.sybase.com/products/application tools The following provides

details on Oracle’s tools: http://www.oracle.com/tools

This is usually an informal process that involves discussions with user groups, a study

of the current operating environment and how it is expected to change, analysis of

any available documentation on existing applications that are expected to be replaced

or complemented by the database, and so on. Several methodologies have been pro-

posed for organizing and presenting the information gathered in this step, and some

automated tools have been developed to support this process.

(2) Conceptual Database Design: The information gathered in the requirements

analysis step is used to develop a high-level description of the data to be stored in the

database, along with the constraints that are known to hold over this data. This step

is often carried out using the ER model, or a similar high-level data model, and is

discussed in the rest of this chapter.

(3) Logical Database Design: We must choose a DBMS to implement our database

design, and convert the conceptual database design into a database schema in the data

model of the chosen DBMS. We will only consider relational DBMSs, and therefore,

the task in the logical design step is to convert an ER schema into a relational database

schema. We discuss this step in detail in Chapter 3; the result is a conceptual schema,

sometimes called the logical schema, in the relational data model.

2.1.1 Beyond the ER Model

ER modeling is sometimes regarded as a complete approach to designing a logical

database schema. This is incorrect because the ER diagram is just an approximate

description of the data, constructed through a very subjective evaluation of the infor-

mation collected during requirements analysis. A more careful analysis can often refine

the logical schema obtained at the end of Step 3. Once we have a good logical schema,

we must consider performance criteria and design the physical schema. Finally, we

must address security issues and ensure that users are able to access the data they

need, but not data that we wish to hide from them. The remaining three steps of

database design are briefly described below: 1

1This material can be omitted on a first reading of this chapter without loss of continuity.

26 Chapter 2

(4) Schema Refinement: The fourth step in database design is to analyze the

collection of relations in our relational database schema to identify potential problems,

and to refine it. In contrast to the requirements analysis and conceptual design steps,

which are essentially subjective, schema refinement can be guided by some elegant and

powerful theory. We discuss the theory of normalizing relations—restructuring them

to ensure some desirable properties—in Chapter 15.

(5) Physical Database Design: In this step we must consider typical expected

workloads that our database must support and further refine the database design to

ensure that it meets desired performance criteria. This step may simply involve build-

ing indexes on some tables and clustering some tables, or it may involve a substantial

redesign of parts of the database schema obtained from the earlier design steps. We

discuss physical design and database tuning in Chapter 16.

(6) Security Design: In this step, we identify different user groups and different

roles played by various users (e.g., the development team for a product, the customer

support representatives, the product manager). For each role and user group, we must

identify the parts of the database that they must be able to access and the parts of the

database that they should not be allowed to access, and take steps to ensure that they

can access only the necessary parts. A DBMS provides several mechanisms to assist

in this step, and we discuss this in Chapter 17.

In general, our division of the design process into steps should be seen as a classification

of the kinds of steps involved in design. Realistically, although we might begin with

the six step process outlined here, a complete database design will probably require

a subsequent tuning phase in which all six kinds of design steps are interleaved and

repeated until the design is satisfactory. Further, we have omitted the important steps

of implementing the database design, and designing and implementing the application

layers that run on top of the DBMS. In practice, of course, these additional steps can

lead to a rethinking of the basic database design.

The concepts and techniques that underlie a relational DBMS are clearly useful to

someone who wants to implement or maintain the internals of a database system.

However, it is important to recognize that serious users and DBAs must also know

how a DBMS works. A good understanding of database system internals is essential

for a user who wishes to take full advantage of a DBMS and design a good database;

this is especially true of physical design and database tuning.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable from other objects.

Examples include the following: the Green Dragonzord toy, the toy department, the

manager of the toy department, the home address of the manager of the toy depart-

The Entity-Relationship Model 27

ment. It is often useful to identify a collection of similar entities. Such a collection is

called an entity set. Note that entity sets need not be disjoint; the collection of toy

department employees and the collection of appliance department employees may both

contain employee John Doe (who happens to work in both departments). We could

also define an entity set called Employees that contains both the toy and appliance

department employee sets.

An entity is described using a set of attributes. All entities in a given entity set have

the same attributes; this is essentially what we mean by similar. (This statement is

an oversimplification, as we will see when we discuss inheritance hierarchies in Section

2.4.4, but it suffices for now and highlights the main idea.) Our choice of attributes

reflects the level of detail at which we wish to represent information about entities.

For example, the Employees entity set could use name, social security number (ssn),

and parking lot (lot) as attributes. In this case we will store the name, social secu-

rity number, and lot number for each employee. However, we will not store, say, an

employee’s address (or gender or age).

For each attribute associated with an entity set, we must identify a domain of possible

values. For example, the domain associated with the attribute name of Employees

might be the set of 20-character strings.2 As another example, if the company rates

employees on a scale of 1 to 10 and stores ratings in a field called rating, the associated

domain consists of integers 1 through 10. Further, for each entity set, we choose a key.

A key is a minimal set of attributes whose values uniquely identify an entity in the

set. There could be more than one candidate key; if so, we designate one of them as

the primary key. For now we will assume that each entity set contains at least one

set of attributes that uniquely identifies an entity in the entity set; that is, the set of

attributes contains a key. We will revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure 2.1.

An entity set is represented by a rectangle, and an attribute is represented by an oval.

Each attribute in the primary key is underlined. The domain information could be

listed along with the attribute name, but we omit this to keep the figures compact.

The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we may

have the relationship that Attishoo works in the pharmacy department. As with

entities, we may wish to collect a set of similar relationships into a relationship set.

2To avoid confusion, we will assume that attribute names do not repeat across entity sets. This is

not a real limitation because we can always use the entity set name to resolve ambiguities if the same

attribute name is used in more than one entity set.

28 Chapter 2

Employees

ssn

name

lot

Figure 2.1 The Employees Entity Set

A relationship set can be thought of as a set of n-tuples:

{(e1, . . . , en) | e1 ∈ E1, . . . , en ∈ En}

Each n-tuple denotes a relationship involving n entities e1 through en, where entity ei

is in entity set Ei. In Figure 2.2 we show the relationship set Works In, in which each

relationship indicates a department in which an employee works. Note that several

relationship sets might involve the same entity sets. For example, we could also have

a Manages relationship set involving Employees and Departments.

dname

budgetdid

since

name

Works_In DepartmentsEmployees

ssn lot

Figure 2.2 The Works In Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes are used

to record information about the relationship, rather than about any one of the par-

ticipating entities; for example, we may wish to record that Attishoo works in the

pharmacy department as of January 1991. This information is captured in Figure 2.2

by adding an attribute, since, to Works In. A relationship must be uniquely identified

by the participating entities, without reference to the descriptive attributes. In the

Works In relationship set, for example, each Works In relationship must be uniquely

identified by the combination of employee ssn and department did. Thus, for a given

employee-department pair, we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an instance

can be thought of as a ‘snapshot’ of the relationship set at some instant in time. An

instance of the Works In relationship set is shown in Figure 2.3. Each Employees entity

is denoted by its ssn, and each Departments entity is denoted by its did, for simplicity.

The Entity-Relationship Model 29

The since value is shown beside each relationship. (The ‘many-to-many’ and ‘total

participation’ comments in the figure will be discussed later, when we discuss integrity

constraints.)

131-24-3650

231-31-5368

223-32-6316

123-22-3666

1/1/91

3/3/93

2/2/92

3/1/92

3/1/92

51

56

60

EMPLOYEES

Total participation

WORKS_IN

Many to Many

DEPARTMENTS

Total participation

Figure 2.3 An Instance of the Works In Relationship Set

As another example of an ER diagram, suppose that each department has offices in

several locations and we want to record the locations at which each employee works.

This relationship is ternary because we must record an association between an em-

ployee, a department, and a location. The ER diagram for this variant of Works In,

which we call Works In2, is shown in Figure 2.4.

dname

budgetdid

since

name

Employees

ssn lot

Locations

Departments

capacityaddress

Works_In2

Figure 2.4 A Ternary Relationship Set

The entity sets that participate in a relationship set need not be distinct; sometimes

a relationship might involve two entities in the same entity set. For example, consider

the Reports To relationship set that is shown in Figure 2.5. Since employees report

to other employees, every relationship in Reports To is of the form (emp1, emp2),

30 Chapter 2

where both emp1 and emp2 are entities in Employees. However, they play different

roles: emp1 reports to the managing employee emp2, which is reflected in the role

indicators supervisor and subordinate in Figure 2.5. If an entity set plays more than

one role, the role indicator concatenated with an attribute name from the entity set

gives us a unique name for each attribute in the relationship set. For example, the

Reports To relationship set has attributes corresponding to the ssn of the supervisor

and the ssn of the subordinate, and the names of these attributes are supervisor ssn

and subordinate ssn.

Reports_To

name

Employees

subordinatesupervisor

ssn lot

Figure 2.5 The Reports To Relationship Set

2.4 ADDITIONAL FEATURES OF THE ER MODEL

We now look at some of the constructs in the ER model that allow us to describe some

subtle properties of the data. The expressiveness of the ER model is a big reason for

its widespread use.

2.4.1 Key Constraints

Consider the Works In relationship shown in Figure 2.2. An employee can work in

several departments, and a department can have several employees, as illustrated in

the Works In instance shown in Figure 2.3. Employee 231-31-5368 has worked in

Department 51 since 3/3/93 and in Department 56 since 2/2/92. Department 51 has

two employees.

Now consider another relationship set called Manages between the Employees and De-

partments entity sets such that each department has at most one manager, although a

single employee is allowed to manage more than one department. The restriction that

each department has at most one manager is an example of a key constraint, and

it implies that each Departments entity appears in at most one Manages relationship

The Entity-Relationship Model 31

in any allowable instance of Manages. This restriction is indicated in the ER diagram

of Figure 2.6 by using an arrow from Departments to Manages. Intuitively, the ar-

row states that given a Departments entity, we can uniquely determine the Manages

relationship in which it appears.

name dname

budgetdid

since

ManagesEmployees Departments

ssn lot

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this is also

a potential instance for the Works In relationship set, the instance of Works In shown

in Figure 2.3 violates the key constraint on Manages.

131-24-3650

231-31-5368

223-32-6316

123-22-3666

51

56

60

EMPLOYEES MANAGES DEPARTMENTS

Total participationOne to ManyPartial participation

3/3/93

2/2/92

3/1/92

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to indicate that

one employee can be associated with many departments (in the capacity of a manager),

whereas each department can be associated with at most one employee as its manager.

In contrast, the Works In relationship set, in which an employee is allowed to work in

several departments and a department is allowed to have several employees, is said to

be many-to-many.

32 Chapter 2

If we add the restriction that each employee can manage at most one department

to the Manages relationship set, which would be indicated by adding an arrow from

Employees to Manages in Figure 2.6, we have a one-to-one relationship set.

Key Constraints for Ternary Relationships

We can extend this convention—and the underlying key constraint concept—to rela-

tionship sets involving three or more entity sets: If an entity set E has a key constraint

in a relationship set R, each entity in an instance of E appears in at most one rela-

tionship in (a corresponding instance of) R. To indicate a key constraint on entity set

E in relationship set R, we draw an arrow from E to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each employee

works in at most one department, and at a single location. An instance of the

Works In3 relationship set is shown in Figure 2.9. Notice that each department can be

associated with several employees and locations, and each location can be associated

with several departments and employees; however, each employee is associated with a

single department and location.

dname

budgetdid

since

name

Employees

ssn lot

Locations

Departments

capacityaddress

Works_In3

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most one manager.

A natural question to ask is whether every department has a manager. Let us say that

every department is required to have a manager. This requirement is an example of

a participation constraint; the participation of the entity set Departments in the

relationship set Manages is said to be total. A participation that is not total is said to

be partial. As an example, the participation of the entity set Employees in Manages

is partial, since not every employee gets to manage a department.

The Entity-Relationship Model 33

131-24-3650

231-31-5368

223-32-6316

123-22-3666

EMPLOYEES

51

56

60

Rome

Delhi

Paris

3/3/93

2/2/92

3/1/92

3/1/92

WORKS_IN3

Key constraint

DEPARTMENTS

LOCATIONS

Figure 2.9 An Instance of Works In3

Revisiting the Works In relationship set, it is natural to expect that each employee

works in at least one department and that each department has at least one employee.

This means that the participation of both Employees and Departments in Works In

is total. The ER diagram in Figure 2.10 shows both the Manages and Works In

relationship sets and all the given constraints. If the participation of an entity set

in a relationship set is total, the two are connected by a thick line; independently,

the presence of an arrow indicates a key constraint. The instances of Works In and

Manages shown in Figures 2.3 and 2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set include a

key. This assumption does not always hold. For example, suppose that employees can

purchase insurance policies to cover their dependents. We wish to record information

about policies, including who is covered by each policy, but this information is really

our only interest in the dependents of an employee. If an employee quits, any policy

owned by the employee is terminated and we want to delete all the relevant policy and

dependent information from the database.

We might choose to identify a dependent by name alone in this situation, since it is rea-

sonable to expect that the dependents of a given employee have different names. Thus

the attributes of the Dependents entity set might be pname and age. The attribute

pname does not identify a dependent uniquely. Recall that the key for Employees is

34 Chapter 2

name dname

budgetdid

since

Manages

name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

lot

Figure 2.10 Manages and Works In

ssn; thus we might have two employees called Smethurst, and each might have a son

called Joe.

Dependents is an example of a weak entity set. A weak entity can be identified

uniquely only by considering some of its attributes in conjunction with the primary

key of another entity, which is called the identifying owner.

The following restrictions must hold:

The owner entity set and the weak entity set must participate in a one-to-many

relationship set (one owner entity is associated with one or more weak entities,

but each weak entity has a single owner). This relationship set is called the

identifying relationship set of the weak entity set.

The weak entity set must have total participation in the identifying relationship

set.

For example, a Dependents entity can be identified uniquely only if we take the key

of the owning Employees entity and the pname of the Dependents entity. The set of

attributes of a weak entity set that uniquely identify a weak entity for a given owner

entity is called a partial key of the weak entity set. In our example pname is a partial

key for Dependents.

The Dependents weak entity set and its relationship to Employees is shown in Fig-

ure 2.11. The total participation of Dependents in Policy is indicated by linking them

The Entity-Relationship Model 35

with a dark line. The arrow from Dependents to Policy indicates that each Dependents

entity appears in at most one (indeed, exactly one, because of the participation con-

straint) Policy relationship. To underscore the fact that Dependents is a weak entity

and Policy is its identifying relationship, we draw both with dark lines. To indicate

that pname is a partial key for Dependents, we underline it using a broken line. This

means that there may well be two dependents with the same pname value.

name

agepname

DependentsEmployees

ssn

Policy

cost
lot

Figure 2.11 A Weak Entity Set

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses. For

example, we might want to talk about an Hourly Emps entity set and a Contract Emps

entity set to distinguish the basis on which they are paid. We might have attributes

hours worked and hourly wage defined for Hourly Emps and an attribute contractid

defined for Contract Emps.

We want the semantics that every entity in one of these sets is also an Employees entity,

and as such must have all of the attributes of Employees defined. Thus, the attributes

defined for an Hourly Emps entity are the attributes for Employees plus Hourly Emps.

We say that the attributes for the entity set Employees are inherited by the entity

set Hourly Emps, and that Hourly Emps ISA (read is a) Employees. In addition—

and in contrast to class hierarchies in programming languages such as C++—there is

a constraint on queries over instances of these entity sets: A query that asks for all

Employees entities must consider all Hourly Emps and Contract Emps entities as well.

Figure 2.12 illustrates the class hierarchy.

The entity set Employees may also be classified using a different criterion. For example,

we might identify a subset of employees as Senior Emps. We can modify Figure 2.12

to reflect this change by adding a second ISA node as a child of Employees and making

Senior Emps a child of this node. Each of these entity sets might be classified further,

creating a multilevel ISA hierarchy.

A class hierarchy can be viewed in one of two ways:

36 Chapter 2

name

ISA

ssn

EmployeeEmployees

Hourly_Emps Contract_Emps

lot

contractidhours_worked

hourly_wages

Figure 2.12 Class Hierarchy

Employees is specialized into subclasses. Specialization is the process of iden-

tifying subsets of an entity set (the superclass) that share some distinguishing

characteristic. Typically the superclass is defined first, the subclasses are defined

next, and subclass-specific attributes and relationship sets are then added.

Hourly Emps and Contract Emps are generalized by Employees. As another

example, two entity sets Motorboats and Cars may be generalized into an entity

set Motor Vehicles. Generalization consists of identifying some common charac-

teristics of a collection of entity sets and creating a new entity set that contains

entities possessing these common characteristics. Typically the subclasses are de-

fined first, the superclass is defined next, and any relationship sets that involve

the superclass are then defined.

We can specify two kinds of constraints with respect to ISA hierarchies, namely, overlap

and covering constraints. Overlap constraints determine whether two subclasses are

allowed to contain the same entity. For example, can Attishoo be both an Hourly Emps

entity and a Contract Emps entity? Intuitively, no. Can he be both a Contract Emps

entity and a Senior Emps entity? Intuitively, yes. We denote this by writing ‘Con-

tract Emps OVERLAPS Senior Emps.’ In the absence of such a statement, we assume

by default that entity sets are constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collectively

include all entities in the superclass. For example, does every Employees entity have

to belong to one of its subclasses? Intuitively, no. Does every Motor Vehicles entity

have to be either a Motorboats entity or a Cars entity? Intuitively, yes; a charac-

teristic property of generalization hierarchies is that every instance of a superclass is

an instance of a subclass. We denote this by writing ‘Motorboats AND Cars COVER

The Entity-Relationship Model 37

Motor Vehicles.’ In the absence of such a statement, we assume by default that there

is no covering constraint; we can have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or generaliza-

tion):

1. We might want to add descriptive attributes that make sense only for the entities

in a subclass. For example, hourly wages does not make sense for a Contract Emps

entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some relation-

ship. For example, we might wish to define the Manages relationship so that the

participating entity sets are Senior Emps and Departments, to ensure that only

senior employees can be managers. As another example, Motorboats and Cars

may have different descriptive attributes (say, tonnage and number of doors), but

as Motor Vehicles entities, they must be licensed. The licensing information can

be captured by a Licensed To relationship between Motor Vehicles and an entity

set called Owners.

2.4.5 Aggregation

As we have defined it thus far, a relationship set is an association between entity sets.

Sometimes we have to model a relationship between a collection of entities and rela-

tionships. Suppose that we have an entity set called Projects and that each Projects

entity is sponsored by one or more departments. The Sponsors relationship set cap-

tures this information. A department that sponsors a project might assign employees

to monitor the sponsorship. Intuitively, Monitors should be a relationship set that

associates a Sponsors relationship (rather than a Projects or Departments entity) with

an Employees entity. However, we have defined relationships to associate two or more

entities.

In order to define a relationship set such as Monitors, we introduce a new feature of the

ER model, called aggregation. Aggregation allows us to indicate that a relationship

set (identified through a dashed box) participates in another relationship set. This is

illustrated in Figure 2.13, with a dashed box around Sponsors (and its participating

entity sets) used to denote aggregation. This effectively allows us to treat Sponsors as

an entity set for purposes of defining the Monitors relationship set.

When should we use aggregation? Intuitively, we use it when we need to express a

relationship among relationships. But can’t we express relationships involving other

relationships without using aggregation? In our example, why not make Sponsors a

ternary relationship? The answer is that there are really two distinct relationships,

Sponsors and Monitors, each possibly with attributes of its own. For instance, the

38 Chapter 2

until

since

name

budgetdidpid

started_on

pbudget

dname

ssn

DepartmentsProjects Sponsors

Employees

Monitors

lot

Figure 2.13 Aggregation

Monitors relationship has an attribute until that records the date until when the em-

ployee is appointed as the sponsorship monitor. Compare this attribute with the

attribute since of Sponsors, which is the date when the sponsorship took effect. The

use of aggregation versus a ternary relationship may also be guided by certain integrity

constraints, as explained in Section 2.5.4.

2.5 CONCEPTUAL DATABASE DESIGN WITH THE ER MODEL

Developing an ER diagram presents several choices, including the following:

Should a concept be modeled as an entity or an attribute?

Should a concept be modeled as an entity or a relationship?

What are the relationship sets and their participating entity sets? Should we use

binary or ternary relationships?

Should we use aggregation?

We now discuss the issues involved in making these choices.

The Entity-Relationship Model 39

2. 1 Entity versus Attribute

While identifying the attributes of an entity set, it is sometimes not clear whether a

property should be modeled as an attribute or as an entity set (and related to the first

entity set using a relationship set). For example, consider adding address information

to the Employees entity set. One option is to use an attribute address. This option is

appropriate if we need to record only one address per employee, and it suffices to think

of an address as a string. An alternative is to create an entity set called Addresses

and to record associations between employees and addresses using a relationship (say,

Has Address). This more complex alternative is necessary in two situations:

We have to record more than one address for an employee.

We want to capture the structure of an address in our ER diagram. For example,

we might break down an address into city, state, country, and Zip code, in addition

to a string for street information. By representing an address as an entity with

these attributes, we can support queries such as “Find all employees with an

address in Madison, WI.”

For another example of when to model a concept as an entity set rather than as an

attribute, consider the relationship set (called Works In2) shown in Figure 2.14.

dname

budgetdid

name

DepartmentsEmployees

ssn lot

from to

Works_In2

Figure 2.14 The Works In2 Relationship Set

It differs from the Works In relationship set of Figure 2.2 only in that it has attributes

from and to, instead of since. Intuitively, it records the interval during which an

employee works for a department. Now suppose that it is possible for an employee to

work in a given department over more than one period.

This possibility is ruled out by the ER diagram’s semantics. The problem is that

we want to record several values for the descriptive attributes for each instance of

the Works In2 relationship. (This situation is analogous to wanting to record several

addresses for each employee.) We can address this problem by introducing an entity

set called, say, Duration, with attributes from and to, as shown in Figure 2.15.

.5

40 Chapter 2

dname

budgetdid

name

Departments

ssn lot

from to

Employees Works_In4

Duration

Figure 2.15 The Works In4 Relationship Set

In some versions of the ER model, attributes are allowed to take on sets as values.

Given this feature, we could make Duration an attribute of Works In, rather than an

entity set; associated with each Works In relationship, we would have a set of intervals.

This approach is perhaps more intuitive than modeling Duration as an entity set.

Nonetheless, when such set-valued attributes are translated into the relational model,

which does not support set-valued attributes, the resulting relational schema is very

similar to what we get by regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each depart-

ment manager is given a discretionary budget (dbudget), as shown in Figure 2.16, in

which we have also renamed the relationship set to Manages2.

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

Manages2

Figure 2.16 Entity versus Relationship

There is at most one employee managing a department, but a given employee could

manage several departments; we store the starting date and discretionary budget for

each manager-department pair. This approach is natural if we assume that a manager

receives a separate discretionary budget for each department that he or she manages.

The Entity-Relationship Model 41

But what if the discretionary budget is a sum that covers all departments managed by

that employee? In this case each Manages2 relationship that involves a given employee

will have the same value in the dbudget field. In general such redundancy could be

significant and could cause a variety of problems. (We discuss redundancy and its

attendant problems in Chapter 15.) Another problem with this design is that it is

misleading.

We can address these problems by associating dbudget with the appointment of the

employee as manager of a group of departments. In this approach, we model the

appointment as an entity set, say Mgr Appt, and use a ternary relationship, say Man-

ages3, to relate a manager, an appointment, and a department. The details of an

appointment (such as the discretionary budget) are not repeated for each department

that is included in the appointment now, although there is still one Manages3 relation-

ship instance per such department. Further, note that each department has at most

one manager, as before, because of the key constraint. This approach is illustrated in

Figure 2.17.

Employees

name dname

budgetdid

Departments

ssn lot

Mgr_Appts

Manages3

dbudget

apptnum

since

Figure 2.17 Entity Set versus Relationship

2.5.3 Binary versus Ternary Relationships *

Consider the ER diagram shown in Figure 2.18. It models a situation in which an

employee can own several policies, each policy can be owned by several employees, and

each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

A policy cannot be owned jointly by two or more employees.

Every policy must be owned by some employee.

42 Chapter 2

name

agepname

DependentsEmployees

ssn

Covers

policyid cost

lot

Policies

Figure 2.18 Policies as an Entity Set

Dependents is a weak entity set, and each dependent entity is uniquely identified by

taking pname in conjunction with the policyid of a policy entity (which, intuitively,

covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with respect

to Covers, but this constraint has the unintended side effect that a policy can cover only

one dependent. The second requirement suggests that we impose a total participation

constraint on Policies. This solution is acceptable if each policy covers at least one

dependent. The third requirement forces us to introduce an identifying relationship

that is binary (in our version of ER diagrams, although there are versions in which

this is not the case).

Even ignoring the third point above, the best way to model this situation is to use two

binary relationships, as shown in Figure 2.19.

This example really had two relationships involving Policies, and our attempt to use

a single ternary relationship (Figure 2.18) was inappropriate. There are situations,

however, where a relationship inherently associates more than two entities. We have

seen such an example in Figure 2.4 and also Figures 2.15 and 2.17.

As a good example of a ternary relationship, consider entity sets Parts, Suppliers, and

Departments, and a relationship set Contracts (with descriptive attribute qty) that

involves all of them. A contract specifies that a supplier will supply (some quantity of)

a part to a department. This relationship cannot be adequately captured by a collection

of binary relationships (without the use of aggregation). With binary relationships, we

can denote that a supplier ‘can supply’ certain parts, that a department ‘needs’ some

The Entity-Relationship Model 43

name

agepname

DependentsEmployees

ssn

policyid cost

Beneficiary

lot

Policies

Purchaser

Figure 2.19 Policy Revisited

parts, or that a department ‘deals with’ a certain supplier. No combination of these

relationships expresses the meaning of a contract adequately, for at least two reasons:

The facts that supplier S can supply part P, that department D needs part P, and

that D will buy from S do not necessarily imply that department D indeed buys

part P from supplier S!

We cannot represent the qty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships *

As we noted in Section 2.4.5, the choice between using aggregation or a ternary relation-

ship is mainly determined by the existence of a relationship that relates a relationship

set to an entity set (or second relationship set). The choice may also be guided by

certain integrity constraints that we want to express. For example, consider the ER

diagram shown in Figure 2.13. According to this diagram, a project can be sponsored

by any number of departments, a department can sponsor one or more projects, and

each sponsorship is monitored by one or more employees. If we don’t need to record

the until attribute of Monitors, then we might reasonably use a ternary relationship,

say, Sponsors2, as shown in Figure 2.20.

Consider the constraint that each sponsorship (of a project by a department) be mon-

itored by at most one employee. We cannot express this constraint in terms of the

Sponsors2 relationship set. On the other hand, we can easily express the constraint

by drawing an arrow from the aggregated relationship Sponsors to the relationship

44 Chapter 2

budgetdidpid

started_on

pbudget

dname

DepartmentsProjects Sponsors2

name

ssn

Employees

lot

Figure 2.20 Using a Ternary Relationship instead of Aggregation

Monitors in Figure 2.13. Thus, the presence of such a constraint serves as another

reason for using aggregation rather than a ternary relationship set.

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES *

We have thus far concentrated on the constructs available in the ER model for describ-

ing various application concepts and relationships. The process of conceptual design

consists of more than just describing small fragments of the application in terms of

ER diagrams. For a large enterprise, the design may require the efforts of more than

one designer and span data and application code used by a number of user groups.

Using a high-level, semantic data model such as ER diagrams for conceptual design in

such an environment offers the additional advantage that the high-level design can be

diagrammatically represented and is easily understood by the many people who must

provide input to the design process.

An important aspect of the design process is the methodology used to structure the

development of the overall design and to ensure that the design takes into account all

user requirements and is consistent. The usual approach is that the requirements of

various user groups are considered, any conflicting requirements are somehow resolved,

and a single set of global requirements is generated at the end of the requirements

analysis phase. Generating a single set of global requirements is a difficult task, but

it allows the conceptual design phase to proceed with the development of a logical

schema that spans all the data and applications throughout the enterprise.

The Entity-Relationship Model 45

An alternative approach is to develop separate conceptual schemas for different user

groups and to then integrate these conceptual schemas. To integrate multiple concep-

tual schemas, we must establish correspondences between entities, relationships, and

attributes, and we must resolve numerous kinds of conflicts (e.g., naming conflicts,

domain mismatches, differences in measurement units). This task is difficult in its

own right. In some situations schema integration cannot be avoided—for example,

when one organization merges with another, existing databases may have to be inte-

grated. Schema integration is also increasing in importance as users demand access to

heterogeneous data sources, often maintained by different organizations.

2.7 POINTS TO REVIEW

Database design has six steps: requirements analysis, conceptual database design,

logical database design, schema refinement, physical database design, and security

design. Conceptual design should produce a high-level description of the data,

and the entity-relationship (ER) data model provides a graphical approach to this

design phase. (Section 2.1)

In the ER model, a real-world object is represented as an entity. An entity set is a

collection of structurally identical entities. Entities are described using attributes.

Each entity set has a distinguished set of attributes called a key that can be used

to uniquely identify each entity. (Section 2.2)

A relationship is an association between two or more entities. A relationship set

is a collection of relationships that relate entities from the same entity sets. A

relationship can also have descriptive attributes. (Section 2.3)

A key constraint between an entity set S and a relationship set restricts instances

of the relationship set by requiring that each entity of S participate in at most one

relationship. A participation constraint between an entity set S and a relationship

set restricts instances of the relationship set by requiring that each entity of S

participate in at least one relationship. The identity and existence of a weak entity

depends on the identity and existence of another (owner) entity. Class hierarchies

organize structurally similar entities through inheritance into sub- and super-

classes. Aggregation conceptually transforms a relationship set into an entity set

such that the resulting construct can be related to other entity sets. (Section 2.4)

Development of an ER diagram involves important modeling decisions. A thor-

ough understanding of the problem being modeled is necessary to decide whether

to use an attribute or an entity set, an entity or a relationship set, a binary or

ternary relationship, or aggregation. (Section 2.5)

Conceptual design for large enterprises is especially challenging because data from

many sources, managed by many groups, is involved. (Section 2.6)

46 Chapter 2

EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,

entity set, relationship set, one-to-many relationship, many-to-many relationship, participa-

tion constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role

indicator.

Exercise 2.2 A university database contains information about professors (identified by so-

cial security number, or SSN) and courses (identified by courseid). Professors teach courses;

each of the following situations concerns the Teaches relationship set. For each situation,

draw an ER diagram that describes it (assuming that no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be

recorded.

2. Professors can teach the same course in several semesters, and only the most recent

such offering needs to be recorded. (Assume this condition applies in all subsequent

questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be

taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it

is possible that no one professor in a team can teach the course. Model this situation,

introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending

date, and a budget.

Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or

Ph.D.).

Each project is managed by one professor (known as the project’s principal investigator).

Each project is worked on by one or more professors (known as the project’s co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (known as the project’s

research assistants).

When graduate students work on a project, a professor must supervise their work on the

project. Graduate students can work on multiple projects, in which case they will have

a (potentially different) supervisor for each one.

Departments have a department number, a department name, and a main office.

Departments have a professor (known as the chairman) who runs the department.

Professors work in one or more departments, and for each department that they work

in, a time percentage is associated with their job.

The Entity-Relationship Model 47

Graduate students have one major department in which they are working on their degree.

Each graduate student has another, more senior graduate student (known as a student

advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only

the basic ER model here, that is, entities, relationships, and attributes. Be sure to indicate

any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified

by ssn, with salary and phone as attributes); departments (identified by dno, with dname and

budget as attributes); and children of employees (with name and age as attributes). Employees

work in departments; each department is managed by an employee; a child must be identified

uniquely by name when the parent (who is an employee; assume that only one parent works

for the company) is known. We are not interested in information about a child once the

parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform

on its albums (as well as other company data) in a database. The company has wisely chosen

to hire you as a database designer (at your usual consulting fee of $2,500/day).

Each musician that records at Notown has an SSN, a name, an address, and a phone

number. Poorly paid musicians often share the same address, and no address has more

than one phone.

Each instrument that is used in songs recorded at Notown has a name (e.g., guitar,

synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album that is recorded on the Notown label has a title, a copyright date, a format

(e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be played by

several musicians.

Each album has a number of songs on it, but no song may appear on more than one

album.

Each song is performed by one or more musicians, and a musician may perform a number

of songs.

Each album has exactly one musician who acts as its producer. A musician may produce

several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The

following information describes the situation that the Notown database must model. Be sure

to indicate all key and cardinality constraints and any assumptions that you make. Identify

any constraints that you are unable to capture in the ER diagram and briefly explain why

you could not express them.

48 Chapter 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane

County Airport officials about the poor organization at the airport. As a result, the officials

have decided that all information related to the airport should be organized using a DBMS,

and you’ve been hired to design the database. Your first task is to organize the informa-

tion about all the airplanes that are stationed and maintained at the airport. The relevant

information is as follows:

Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is identified by

a model number (e.g., DC-10) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN, address,

phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her expertise may

overlap with that of other technicians. This information about technicians must also be

recorded.

Traffic controllers must have an annual medical examination. For each traffic controller,

you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store the

union membership number of each employee. You can assume that each employee is

uniquely identified by the social security number.

The airport has a number of tests that are used periodically to ensure that airplanes are

still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a

name, and a maximum possible score.

The FAA requires the airport to keep track of each time that a given airplane is tested

by a given technician using a given test. For each testing event, the information needed

is the date, the number of hours the technician spent doing the test, and the score that

the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes

of each entity and relationship set; also specify the key and participation constraints for

each relationship set. Specify any necessary overlap and covering constraints as well (in

English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician

who is an expert on that model. How would you express this constraint in the ER

diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life-

time supply of medicines if you design its database. Given the rising cost of health care, you

agree. Here’s the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years of

experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

The Entity-Relationship Model 49

For each drug, the trade name and formula must be recorded. Each drug is sold by

a given pharmaceutical company, and the trade name identifies a drug uniquely from

among the products of that company. If a pharmaceutical company is deleted, you need

not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold at

several pharmacies, and the price could vary from one pharmacy to another.

Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for

several patients, and a patient could obtain prescriptions from several doctors. Each

prescription has a date and a quantity associated with it. You can assume that if a

doctor prescribes the same drug for the same patient more than once, only the last such

prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical

company can contract with several pharmacies, and a pharmacy can contract with several

pharmaceutical companies. For each contract, you have to store a start date, an end date,

and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a supervisor

for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the above information. Identify any constraints that

are not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharma-

cies?

3. How would your design change if the design requirements change as follows: If a doctor

prescribes the same drug for the same patient more than once, several such prescriptions

may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on

databases because you love to cook data and you somehow confused ‘data base’ with ‘data

baste.’ Your old love is still there, however, so you set up a database company, ArtBase, that

builds a product for art galleries. The core of this product is a database with a schema that

captures all the information that galleries need to maintain. Galleries keep information about

artists, their names (which are unique), birthplaces, age, and style of art. For each piece

of artwork, the artist, the year it was made, its unique title, its type of art (e.g., painting,

lithograph, sculpture, photograph), and its price must be stored. Pieces of artwork are also

classified into groups of various kinds, for example, portraits, still lifes, works by Picasso, or

works of the 19th century; a given piece may belong to more than one group. Each group

is identified by a name (like those above) that describes the group. Finally, galleries keep

information about customers. For each customer, galleries keep their unique name, address,

total amount of dollars they have spent in the gallery (very important!), and the artists and

groups of art that each customer tends to like.

Draw the ER diagram for the database.

50 Chapter 2

BIBLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [52] (which also

contains a survey of commercial database design tools) and [641].

The ER model was proposed by Chen [145], and extensions have been proposed in a number of

subsequent papers. Generalization and aggregation were introduced in [604]. [330] and [514]

contain good surveys of semantic data models. Dynamic and temporal aspects of semantic

data models are discussed in [658].

[642] discusses a design methodology based on developing an ER diagram and then translating

to the relational model. Markowitz considers referential integrity in the context of ER to

relational mapping and discusses the support provided in some commercial systems (as of

that date) in [446, 447].

The entity-relationship conference proceedings contain numerous papers on conceptual design,

with an emphasis on the ER model, for example, [609].

View integration is discussed in several papers, including [84, 118, 153, 207, 465, 480, 479,

596, 608, 657]. [53] is a survey of several integration approaches.

